Predictive Modeling of Microstructure Evolution within Multi-Phase Steels during Rolling Processes


Recently, severe plastic deformation induced microstructure evolution has been studied through extensive experimental investigations for various materials with multiple phases during rolling processes. In this study, a dislocation density-based numerical approach is combined with strain-induced phase transformation kinetics to investigate the gain size change within steels consisting of different phases. The microstructure evolution caused by plastic deformation during rolling processes is modeled by finite element formulation with a dislocation density-based model and strain-induced transformation subroutines. The validity of the numerical solutions is evaluated through simulations of cold rolling processes of steels at different rolling strains and comparison with experimental results. It is shown that the microstructure evolution of different phases during rolling processes is well captured by the proposed approach. The predicted mechanical behavior of the rolled steels exhibits a good agreement with the experimental results under tensile loadings.


Mechanical and Aerospace Engineering

Research Center/Lab(s)

Intelligent Systems Center


The authors wish to gratefully acknowledge that this research was partially funded by MFRC (Grant Number: 208981).

Keywords and Phrases

Cold rolling; Plastic 00deformation; Strain; Cold rolling process; Dislocation densities; Experimental investigations; Finite element formulations; Micro-structure evolutions; Severe plastic deformations; Strain induced transformation; Strain-induced phase transformation; Microstructure

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2019 Elsevier, All rights reserved.

Publication Date

01 Jan 2019