Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array


Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.


Mechanical and Aerospace Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

Crystallization; Dewetting; Laser; Mie Resonance; Modulated Assembly; Nanoparticle

International Standard Serial Number (ISSN)

1936-0851; 1936-086X

Document Type

Article - Journal

Document Version


File Type





© 2018 American Chemical Society (ACS), All rights reserved.

Publication Date

01 Mar 2018