A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms


Compliant mechanisms gain at least some of their motion from flexible members. The combination of large-deflection beam analysis, kinematic motion analysis, and energy storage makes the analysis of compliant mechanisms difficult. The design of mechanisms often requires iteration between synthesis and analysis procedures. In general, the difficulty in analysis has limited the use of compliant mechanisms to applications where only simple functions and motions are required. The pseudo-rigid-body model concept promises to be the key to unifying the compliant and rigid-body mechanism theories. It simplifies compliant mechanism analysis by determining an equivalent rigid-body mechanism that accurately models the kinematic characteristics of a compliant mechanism. Once this model is obtained, many well known concepts from rigid-body mechanism theory become amenable for use to analyze and design compliant mechanisms. The pseudo-rigid-body-model concept is used to develop a loop-closure method for the analysis and synthesis of compliant mechanisms. The method allows compliant mechanisms to be designed for tasks that would have earlier been assumed to be unlikely, if not impossible, applications of compliant mechanisms.


Mechanical and Aerospace Engineering

Keywords and Phrases

Compliant Mechanisms; Rigid-Body Mechanisms; Motion; Design; Energy Storage; Deflection; Functions; Mechanisms

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 1996 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Jan 1996