Crystal Plasticity Modeling of Fretting Fatigue Behavior of an Aluminum Alloy

Abstract

Aluminum alloy (AA)7075 is widely used to fabricate parts and components on aircrafts, which are subjected to contact loading that may induce fretting fatigue and catastrophic failure. In this work, a crystal plasticity finite element (CPFE) model accounting for the microstructural features is developed for simulating the fretting fatigue of AA7075-T651. A submodel technology is adopted to refine the contact region to obtain more accurate simulation data. An energy-based criterion is developed for prediction of crack initiation life. The hotspots for the fretting fatigue crack nucleation are identified by the maximum of plastic strain energy density. The proposed CPFE model achieves high accuracy on predicting the fretting fatigue crack initiation and validated by fretting fatigue experimental results.

Department(s)

Materials Science and Engineering

Keywords and Phrases

Crack Initiation; Crystal Plasticity; Dislocation Density; Fretting Fatigue

International Standard Serial Number (ISSN)

0301-679X

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2021 Elsevier, All rights reserved.

Publication Date

01 Apr 2021

Share

 
COinS