Crystal Plasticity Modeling of Void Growth on Grain Boundaries in Ni-Based Superalloys


In this work, we explore the effect of misorientation angles of crystal orientations between two grains along the grain boundary (GB) on void growth behavior in polycrystalline Ni-based superalloys by using a crystal plasticity finite element method. Quantitative analysis is conducted to study the coupled roles of the crystal orientation and stress triaxiality in void growth in bicrystals. Based on our simulation results, we find that, as the main loading axis perpendicular to the GB, voids grow more slowly on tilt GBs in bicrystals than those in single and bicrystal samples with twist GBs, while the void growth in single- and bicrystal samples with twist GBs exhibited almost the same rate and increased with the stress triaxiality levels. The interaction between two crystals bonded with the GB activates the effective Schmid factors in each crystal, which results in asymmetric distribution of the equivalent plastic strain around the void and induces distinct irregularly shaped voids during deformation.


Materials Science and Engineering


This work was supported by grants from the DOE-NETL Crosscutting Research Program (No. FE0031554).

Keywords and Phrases

Bicrystals; Grain Boundaries; Nickel Alloys; Plasticity; Stress Analysis; Superalloys, Asymmetric Distribution; Crystal Plasticity Finite Element Method; Crystal Plasticity Models; Equivalent Plastic Strain; Misorientation Angle; Ni-Based Superalloys; Polycrystalline; Stress Triaxiality, Crystal Orientation

International Standard Serial Number (ISSN)

1047-4838; 1543-1851

Document Type

Article - Journal

Document Version


File Type





© 2019 Minerals, Metals and Materials Society, All rights reserved.

Publication Date

01 Nov 2019