Abstract

Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D'yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

Department(s)

Materials Science and Engineering

International Standard Serial Number (ISSN)

2469-9950

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2012 American Physical Society (APS), All rights reserved.

Publication Date

01 Jul 2012

Share

 
COinS