Interaction of Ag/Pd Metallization with Lead and Bismuth Oxide-based Fluxes in Multilayer Ceramic Capacitors


An ongoing challenge for future developments in high-performance ceramic multilayer capacitors and integrated ceramics is to reduce the internal electrode cost and thickness without sacrificing yield or reliability. Key to these developments is a thorough understanding of the interactions which occur between flux-sintered dielectrics and low-cost, Ag/Pd electrodes. in this paper we present results on the pahse equilibria of Ag/Pd electrode systems with Bi2O3 and PbO fluxes. the conditions under which the bismuth reaction occurs and reactions in the Pd-PbO system are reported. Results show that the equilibrium phases which form depend strongly upon the Ag/Pd ratio and temperature. These phases include PdBi2O4, Pd(Bi), PdPbO2, Pd(Pb), and PbPd3. the PdBi2O4 and PdPbO2 phases decompose when PdO destabilizes, resulting in a series of reactions which result in oxygen evolution and partial melting of components. the exact phase relations of the Ag/Pd-Bi2O3-O2(air) system and Ag/Pd-PbO-O2(air) system have been established for the first time and are discussed in terms of their impact on multilayer, cofired structures.


Materials Science and Engineering

International Standard Serial Number (ISSN)

0002-7820; 1551-2916

Document Type

Article - Journal

Document Version


File Type





© 1992 Wiley-Blackwell, All rights reserved.

Publication Date

01 Sep 1992