Analysis and Approximation of a Fractional Laplacian-Based Closure Model for Turbulent Flows and Its Connection to Richardson Pair Dispersion


We study a turbulence closure model in which the fractional Laplacian (-ĝ)α of the velocity field represents the turbulence diffusivity. We investigate the energy spectrum of the model by applying Pao's energy transfer theory. For the case α = 1/3, the corresponding power law of the energy spectrum in the inertial range has a correction exponent on the regular Kolmogorov -5/3 scaling exponent. For this case, this model represents Richardson's particle pair-distance superdiffusion of a fully developed homogeneous turbulent flow as well as Lévy jumps that lead to the superdiffusion. For other values of α, the power law of the energy spectrum is consistent with the regular Kolmogorov -5/3 scaling exponent. We also propose and study a modular time-stepping algorithm in semi-discretized form. The algorithm is minimally intrusive to a given legacy code for solving Navier-Stokes equations by decoupling the local part and nonlocal part of the equations for the unknowns. We prove the algorithm is first-order accurate and unconditionally stable. We also derive error estimates for full discretizations of the model which, in addition to the time stepping algorithm, involves a finite element spatial discretization and a domain truncation approximation to the range of the fractional Laplacian.


Mathematics and Statistics


Supported by the US National Science Foundation grant DMS-1315259 and the US Air Force Office of Scientific Research grant FA9550-15-1-0001.

Keywords and Phrases

Approximation algorithms; Dispersions; Energy transfer; Finite element method; Laplace transforms; Spectroscopy; Turbulence; Turbulence models; Turbulent flow; Velocity; Viscous flow; Laplacians; Non-local closure; Richardson; Spatial discretizations; Time stepping algorithms; Turbulence closure models; Turbulence diffusivity; Unconditionally stable; Navier Stokes equations; Finite elements; Fractional Laplacians; Navier–Stokes equations; Nonlocal closure; Richardson pair dispersion; Turbulence modeling

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2018 Elsevier, All rights reserved.

Publication Date

01 Mar 2018