A 3D Immersed Finite Element Method with Non-Homogeneous Interface Flux Jump for Applications in Particle-In-Cell Simulations of Plasma-Lunar Surface Interactions


Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.


Mathematics and Statistics

Second Department

Mechanical and Aerospace Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

Immersed Finite Elements; Interface Problems; Lunar Surface; Non-Homogeneous Flux Jump Conditions; Particle-In-Cell; Plasma Environments

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2016 Elsevier, All rights reserved.

Publication Date

01 Sep 2016