Masters Theses

Keywords and Phrases

Additive manufacturing; Bulk metallic glasses; High entropy alloys


"Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following:

1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems.

2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system.

3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state.

Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties."--Abstract, page iii.


Newkirk, Joseph William

Committee Member(s)

Liou, Frank W.
Zhou, Caizhi


Materials Science and Engineering

Degree Name

M.S. in Materials Science and Engineering


United States. National Aeronautics and Space Administration
Boeing Company
Rolls-Royce (1971) Ltd.


Missouri University of Science and Technology

Publication Date

Spring 2014


xiii, 89 pages

Note about bibliography

Includes bibliographical references (pages 85-88).


© 2014 Harihar Rakshit Sistla, All rights reserved.

Document Type

Thesis - Restricted Access

File Type




Subject Headings

Pulsed laser deposition
Metallic glasses
Functionally gradient materials
Materials at high temperatures
Metals -- Rapid solidification processing

Thesis Number

T 10478

Electronic OCLC #


Share My Thesis If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.