Masters Theses


Yanqiong Dong

Keywords and Phrases

Bollinger Bands


“Bollinger Bands are a widely used technical indicator for measuring and displaying the volatility of securities. The bands accomplish this by showing whether prices are high with the use of an upper band, and whether they are low with the use of a lower band. The bands are based on the volatility (standard deviation) of the past price data. This indicator can aid in rigorous pattern recognition and is useful in comparing current price action to possible buy and sell signals, helping to arrive at a self-contained systematic trading decision. However, due to its inherent characteristics, the indicator can provide false signals during trading in some trending markets. The research in this thesis develops two modified models, one combining neural networks with the Bollinger Bands technical indicator, and another incorporating a GARCH-in-mean model with the Bollinger Bands technical indicator to predict and trade on the security trend. The assumption of the combined system is that the neural network or GARCH model will help to overcome the lagging aspects of the Bollinger Bands indicator by providing a next day forecast, allowing the trader to make the correct trading decisions. The profitability of the model is tested using 10 American stocks and indexes"--Abstract, page iii.


Enke, David Lee, 1965-

Committee Member(s)

Myers, Donald D., 1939-2009
Nystrom, Halvard


Engineering Management and Systems Engineering

Degree Name

M.S. in Engineering Management


University of Missouri--Rolla

Publication Date

Fall 2005


viii, 86 pages

Note about bibliography

Includes bibliographical references (pages 81-85).


© 2005 Yanqiong Dong, All rights reserved.

Document Type

Thesis - Restricted Access

File Type




Subject Headings

Investment analysis
Stocks -- Prices -- Mathematical models
Stock price forecasting
Neural networks (Computer science)

Thesis Number

T 8900

Print OCLC #


Link to Catalog Record

Electronic access to the full-text of this document is restricted to Missouri S&T users. Otherwise, request this publication directly from Missouri S&T Library or contact your local library.

Share My Thesis If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.