Masters Theses
Abstract
"Many problems encountered in computer science are best stated in terms of interactions amongst individuals. For example, many problems are most naturally phrased in terms of finding a candidate solution which performs best against a set of test cases. In such situations, methods are needed to find candidate solutions which are expected to perform best over all test cases. Coevolution holds the promise of addressing such problems by employing principles from biological evolution, where populations of candidate solutions and test cases are evolved over time to produce higher quality solutions...This thesis presents a generalization of coevolution to co-optimization, where optimization techniques that do not rely on evolutionary principles may be used. Instead of introducing a new addition to coevolution in order to make it better suited for a particular class of problems, this thesis suggests removing the evolutionary model in favor of a technique better suited for that class of problems"--Abstract, page iii.
Advisor(s)
Tauritz, Daniel R.
Committee Member(s)
Grow, David E.
McMillin, Bruce M.
Department(s)
Computer Science
Degree Name
M.S. in Computer Science
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2008
Pagination
viii, 69 pages
Note about bibliography
Includes bibliographical references (pages 140-142).
Rights
© 2008 Travis Service, All rights reserved.
Document Type
Thesis - Open Access
File Type
text
Language
English
Subject Headings
Coevolution -- Mathematical models
Evolutionary computation
Evolutionary programming (Computer science)
Mathematical optimization
Thesis Number
T 9357
Print OCLC #
260325916
Electronic OCLC #
226300638
Link to Catalog Record
Recommended Citation
Service, Travis, "Co-optimization: a generalization of coevolution" (2008). Masters Theses. 4606.
https://scholarsmine.mst.edu/masters_theses/4606