Location

San Diego, California

Session Start Date

3-26-2001

Session End Date

3-31-2001

Abstract

This paper describes the third of a series of six shaking table experiments conducted as part of ongoing research to evaluate the accuracy and applicability of the Newmark (1965) procedure for computing seismically induced deformation in slopes. A cohesive model slope was shaken by two identical test motions in succession, mimicking a situation that commonly occurs when a preexisting landslide is subjected to strong earthquake shaking. Back analyses of the tests showed that the Newmark (1965) formulation provided moderately accurate estimates of the measured permanent deformations (within 40% to 85% of the maximum measured displacement). The accuracy of the Newmark (1965) formulation was greatest when displacement-dependent degrading yield acceleration was used to model the soil’s transition from peak to residual shear strength. The Newmark analyses were most reliable for the second test that experienced relatively large deformations, and thus where the sliding resistance was controlled by post-peak to residual strength.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Meeting Name

Fourth Conference

Publisher

University of Missouri--Rolla

Publication Date

3-26-2001

Document Version

Final Version

Rights

© 2001 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Mar 26th, 12:00 AM Mar 31st, 12:00 AM

Shaking Table Experiment of a Model Slope Subjected to a Pair of Repeated Ground Motions

San Diego, California

This paper describes the third of a series of six shaking table experiments conducted as part of ongoing research to evaluate the accuracy and applicability of the Newmark (1965) procedure for computing seismically induced deformation in slopes. A cohesive model slope was shaken by two identical test motions in succession, mimicking a situation that commonly occurs when a preexisting landslide is subjected to strong earthquake shaking. Back analyses of the tests showed that the Newmark (1965) formulation provided moderately accurate estimates of the measured permanent deformations (within 40% to 85% of the maximum measured displacement). The accuracy of the Newmark (1965) formulation was greatest when displacement-dependent degrading yield acceleration was used to model the soil’s transition from peak to residual shear strength. The Newmark analyses were most reliable for the second test that experienced relatively large deformations, and thus where the sliding resistance was controlled by post-peak to residual strength.