Geodetic data in plate boundary zones reflect the accrual of tectonic strain and stress, which will ultimately be released in earthquakes, and so they can provide valuable insights into future seismic hazards. To incorporate geodetic measurements of contemporary deformation into the 2022 revision of the New Zealand National Seismic Hazard Model 2022 (NZ NSHM 2022), we derive a range of strain-rate models from published interseismic Global Navigation Satellite Systems velocities for New Zealand. We calculate the uncertainty in strain rate excluding strain from the Taupō rift–Havre trough and Hikurangi subduction zone, which are handled separately, and the corresponding moment rates. A high shear strain rate occurs along the Alpine fault and the North Island dextral fault belt, as well as the eastern coast of the North Island. Dilatation rates are primarily contractional in the South Island and less well constrained in the North Island. Total moment accumulation derived using Kostrov-type summation varies from 0:64 to 2:93 x 1019 N·m= yr. depending on method and parameter choices. To account for both aleatory and epistemic uncertainty in the strain-rate results, we use four different methods for estimating strain rate and calculate various average models and uncertainty metrics. The maximum shear strain rate is similar across all methods, whereas the dilatation rate and overall strain rate style differ more significantly. Each method provides an estimate of its own uncertainty propagated from the data uncertainties, and variability between methods provides an additional estimate of epistemic uncertainty. Epistemic uncertainty in New Zealand tends to be higher than the aleatory uncertainty estimates provided by any single method, and epistemic uncertainty on dilatation rate exceeds the aleatory uncertainty nearly everywhere. These strain-rate models were provided to the NZ NSHM 2022 team and used to develop fault-slip deficit rate models and scaled seismicity rate models.


Geosciences and Geological and Petroleum Engineering


GNS Science, Grant 2020-BD101

International Standard Serial Number (ISSN)

1943-3573; 0037-1106

Document Type

Article - Journal

Document Version


File Type





© 2024 Seismological Society of America, All rights reserved.

Publication Date

01 Feb 2024