The stimulation of unconventional reservoirs to improve oil productivity in tight formations of shale basins is a key objective in hydraulic fracturing treatments. Such stimulation can be made by reliable fracture fluids that have a high viscosity and elasticity to suspend the proppant in the fracture networks. Recently, due to several operational and economic reasons, the oil industry began using highviscosity friction reducers (HVFRs) as direct replacements for linear and crosslinked gels. However, some issues can limit the capability of HVFRs to provide effective sand transport, including the high fluid temperature during fracture treatment inside the formations. This may lead to unstable fracture fluids caused by a decrease in the interconnective strength between the fluid chains, which results in reduced viscosity and elasticity. This study comprehensively investigated HVFRs in comparison with guar at various temperatures. An HVFR at 4 gallons per thousand gallons of water (gpt) and guar at 25 pounds per thousand gallons of water (ppt) were selected based on fluid rheology tests and hydraulic fracture execution field results. The rheological measurements of both fracture fluids were conducted at different temperature values (i.e., 25, 50, 75, and 100 ° C). Static and dynamic proppant settling tests were also conducted at the same temperatures. The results showed that the HVFR provided better proppant transport capability than the guar. The HVFR had better thermal stability than guar, but its viscosity and elasticity decreased significantly when the temperature exceeded 75_C. An HVFR can carry and hold the proppant more deeply inside the fracture than liner gel, but that ability decreases as the temperature increases. Therefore, using conditions that mimic field conditions to measure the fracture fluid rheology, proppant static settling velocity, and proppant dune development under a high temperature is crucial for enhancing the fracture treatment results.


Geosciences and Geological and Petroleum Engineering


Ministry of Higher Education and Scientific Research, Grant None

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2023 Society of Petroleum Engineers (SPE), All rights reserved.

Publication Date

01 Feb 2022