Towards Sustainable Groundwater Management: Predicting Deformation Scenarios with Coupled Hydrogeophysical Models


Land subsidence due to groundwater extraction can cause a permanent loss of groundwater storage, and thus mitigating this is crucial for sustainable groundwater management. One challenge in effective mitigation is accurately predicting the effect of groundwater pumping on land deformation due to uncertainty in subsurface hydrostratigraphy. In this study, we demonstrate how a coupled hydrogeophysical model, combining geophysical and InSAR data, can improve estimates of subsidence by providing information about the subsurface layers that are deforming. Using this model, we estimate future scenarios of subsidence, and the potential of managed aquifer recharge for reducing subsidence. We find that if no management changes are made, roughly ~2 m of subsidence will occur from 2019 to 2038, but that active managed aquifer recharge could reduce land subsidence by as much as ~4 m. This model can enable water managers to mitigate subsidence by prioritizing areas for managed aquifer recharge.

Meeting Name

International Geoscience and Remote Sensing Symposium, IGARSS 2020 (2020: Sep. 26-Oct. 2, Virtual)


Geosciences and Geological and Petroleum Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

climate change; groundwater; InSAR; near-surface geophysics; subsidence

International Standard Book Number (ISBN)


Document Type

Article - Conference proceedings

Document Version


File Type





© 2020 IEEE Geoscience and Remote Sensing Society, All rights reserved.

Publication Date

02 Oct 2020