Water Plugging Performance of Preformed Particle Gel in Partially Filled Fractures


Preformed particle gel (PPG) treatment has been well-recognized as an efficient method to reduce excessive water production in fractured reservoirs. However, previous research on its plugging efficiency was mainly conducted in open fractures. In this paper, calcite-filled fracture models were designed to comprehensively investigate the water plugging performance of PPG in partially filled fractures which are extremely common in fractured reservoirs. Systematic plugging performance tests have proceeded under various calcite-filling conditions. The results show that the calcite particles can improve the breakthrough and retention of the PPG as well as the plugging efficiency. With increased size and concentration of the calcite particles, the PPG breakthrough pressure gradient increases, and the fracture permeability decreases. When the ratio of average calcite particle diameter to fracture width (RC) is small (0.15), the fracture permeability is difficult to be further reduced by increasing PPG concentration or PPG size. However, when the RC increases to 0.21, the plugging performance in fractures filled with more calcite particles or PPG particles, especially the latter, is better than that filled with larger calcite particles. This study provides new insight into the PPG treatment and will contribute to the water control in fractured reservoirs.


Geosciences and Geological and Petroleum Engineering

Keywords and Phrases

Calcite; Efficiency; Petroleum reservoirs; Reservoirs (water), Breakthrough pressures; Calcite particles; Filled fracture; Filling conditions; Fracture permeability; Fractured reservoir; Performance tests; Water production, Fracture

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2019 American Chemical Society (ACS), All rights reserved.

Publication Date

01 Apr 2019