Oscillation and Nonoscillation of Forced Second Order Dynamic Equations

Christopher C. Tisdell
Martin Bohner, Missouri University of Science and Technology

This document has been relocated to http://scholarsmine.mst.edu/math_stat_facwork/676

There were 3 downloads as of 28 Jun 2016.


Oscillation and nonoscillation properties of second order Sturm-Liouville dynamic equations on time scales — for example, second order self-adjoint differential equations and second order Sturm-Liouville difference equations — have attracted much interest. Here we consider a given homogeneous equation and a corresponding equation with forcing term. We give new conditions implying that the latter equation inherits the oscillatory behavior of the homogeneous equation. We also give new conditions that introduce oscillation of the inhomogeneous equation while the homogeneous equation is nonoscillatory. Finally, we explain a gap in a result given in the literature for the continuous and the discrete case. A more useful result is presented, improving the theory even for the corresponding continuous and discrete cases. Examples illustrating the theoretical results are supplied.