Abstract

In this paper, the effect of external gate voltage on GaAs-based metal-semiconductor (MS) Schottky solar cells is investigated. Subsequent changes in photovoltaic characteristic properties of the solar cells are extracted, reported and explained. Under positive gate voltages, the open-circuit voltage and short-circuit current density measured at collector are significantly increased due to the drift of holes from gate junction to the collector (forward bias condition of gate junction). However, there is slight increase in open-circuit voltage under reverse gate voltages, where only thermally generated electrons drift toward the collector junction. Moreover, negative gate voltage on insulated gate contact has resulted into slight increase in open-circuit voltage and short-circuit current compared to zero gate voltage. These results demonstrate the potential to change and control the performance characteristics of Schottky junction solar cells by using gated layers.

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

Gate Controlled; Interfacial Layer; Schottky Solar Cells

International Standard Book Number (ISBN)

978-172810494-2

International Standard Serial Number (ISSN)

0160-8371

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jun 2019

Share

 
COinS