To avoid straightforward volumetric discretization, a discontinuous Galerkin time-domain (DGTD) method integrated with the impedance boundary condition (IBC) is presented in this paper to analyze the scattering from objects with finite conductivity. Two situations are considered. 1) The skin depth is smaller than the thickness of the conductive volume. 2) The skin depth is larger than the thickness of a thin conductive sheet. For the first situation, a surface impedance boundary condition (SIBC) is employed, wherein the surface impedance usually exhibits a complex relation with the frequency. To incorporate the SIBC into DGTD, the surface impedance is first approximated by rational functions in the Laplace domain using the fast relaxation vector-fitting (FRVF) technique. Via inverse Laplace transform, the time-domain DGTD matrix equations can be obtained conveniently in integral form with respect to time t. For the second situation, a transmission IBC (TIBC) is used to include the transparent effects of the fields. In the TIBC, the tangential magnetic field jump is related with the tangential electric field via the surface conductivity. In this work, a specifically designed DGTD algorithm with TIBC is developed to model the graphene up to the terahertz (THz) band. In order to incorporate the TIBC into DGTD without involving the time-domain convolution, an auxiliary surface polarization current governed by a first-order differential equation is introduced over the graphene. For open-region scattering problems, the DGTD algorithm is further hybridized with the time-domain boundary integral (TDBI) method to rigorously truncate the computational domain. To demonstrate the accuracy and applicability of the proposed algorithm, several representative examples are provided.


Electrical and Computer Engineering

Keywords and Phrases

Auxiliary differential equation (ADE); discontinuous Galerkin time-domain (DGTD) method; finite integral technique (FIT); graphene; surface/transmission impedance boundary condition (SIBC/TIBC); time-domain boundary integral (TDBI) algorithm; vector-fitting

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Dec 2015