A discontinuous Galerkin time-domain (DGTD) method analyzing signal/power integrity on multilayered power-ground parallel plate pairs is proposed. The excitation is realized by introducing wave ports on the antipads where electric/magnetic current sources are represented in terms of the eigenmodes of the antipads. Since closed-forms solutions do not exist for the eigenmodes of the arbitrarily shaped antipads, they have to be calculated using numerical schemes. Spatial orthogonality of the eigenmodes permits determination of each mode's temporal expansion coefficient by integrating the product of the electric field and the mode over the wave port. The temporal mode coefficients are then Fourier transformed to accurately calculate the S-parameters corresponding to different modes. Additionally, to generalize the DGTD to manipulate dispersive media, the auxiliary differential equation method is employed. This is done by introducing a time-dependent polarization volume current as an auxiliary unknown and the constitutive relation between this current and the electric field as an auxiliary equation. Consequently, computationally expensive temporal convolution is avoided. Various numerical examples, which demonstrate the applicability, robustness, and accuracy of the proposed method, are presented.


Electrical and Computer Engineering

Keywords and Phrases

Auxiliary differential equation (ADE) method; discontinuous Galerkin time-domain (DGTD) method; dispersive media; numerical eigenmode; power-ground plate pair; wave port excitation

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Feb 2017