Current atmospheric observations tend to support the view that continental tropospheric aerosols (particularly urban aerosols) show multimodal mass distributions in the size range of 0.01-100 μm. The origin of these aerosols is both natural and anthropogenic. Recently, trimodal sub-μm size distributions from combustion measurements at 0.008, 0.035 and 0.15 μm were also observed. Our interest in the present study is the secondary process of growth of sub-μm size aerosols by the coagulation process alone. Using the 'J-space' (integer-space) distribution method of Salk (Suck) and Brock (1979, J. Aerosol Sci. 10, 58-590), we report an accurate numerical simulation study of the evolution of ultrafine to fine particle size distributions. Comparision with the analytic solution of Scott (1968, J. atmos. Sci. 25, 54-64) was made to test the accuracy of our J-space or integer-space distribution method. Our multimodal sub-μ particle size distribution study encompassed the particle size range of 0.001-0.20 μm. Details of particle growth in each mode and interaction between different modes in the multimodal distribution were qualitatively analyzed. © 1986.


Electrical and Computer Engineering

Second Department

Chemical and Biochemical Engineering

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2023 Elsevier, All rights reserved.

Publication Date

01 Jan 1986