Doctoral Dissertations
Abstract
"The development of nanoscale technologies has greatly expanded the scientific and engineering horizons and also has the potential to turn molecular discoveries into worldwide benefits on multiple fronts. Despite recent extensive efforts, the focus of nanoparticle studies has been on their synthesis and various possible derivatives. In this dissertation, molecular based modeling and simulation studies have been performed to characterize and understand the behavior, properties, and effects of nanoparticles in some important material systems. The results show that small nanoparticles that are highly faceted have significant shape effects, which are not captured by classical continuum-based approaches. When dissolved in confined base oil as a nanolubricant additive, the surfactant-coated nanoparticles are found to disturb the layering tendency of the lubricant molecules and result in smoother force and dimension transitions when the normal load and surface separation are changed. Under the condition where nanoparticles are located in the proximity of a sliding surface, they reduce the number of molecules adjacent to the surface, thereby lowering the surface-fluid interaction and the effective shear stress. When dextran chains are used to coat nanoparticle surface, they can be well solvated by water molecules to retain a high level of helical structures. Such dextran-coated nanoparticles are not only soluble in aqueous solutions but also endowed with pore structures from interactive dextran chains that may be suitable for bioengineering applications"--Abstract, page iv.
Advisor(s)
Wang, Jee C.
Committee Member(s)
Al-Dahhan, Muthanna H.
Liang, Xinhua
Neogi, P. (Partho), 1951-
Winiarz, Jeffrey G.
Department(s)
Chemical and Biochemical Engineering
Degree Name
Ph. D. in Chemical Engineering
Sponsor(s)
Petroleum Research Fund
National Science Foundation (U.S.)
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2013
Journal article titles appearing in thesis/dissertation
- A comparative study of nanoparticle interactions by atomistic and classical coarse-grain approaches
- Nanoconfined nanoparticle solutions under time-continuous compression
- Nanotribological responses of nanoparticle solutions
- Dextran-coated nanoparticles: a molecular modeling and simulation study
Pagination
x, 100 pages
Note about bibliography
Includes bibliographical references.
Rights
© 2013 Chen Wang, All rights reserved.
Document Type
Dissertation - Open Access
File Type
text
Language
English
Subject Headings
Nanoparticles -- Models -- Computer simulation
Nanotechnology -- Fluid dynamics
Nanoparticles -- Computer simulation
Tribology
Thesis Number
T 10343
Print OCLC #
861288405
Electronic OCLC #
909399110
Recommended Citation
Wang, Chen, "Behavior and effects of nanoparticles in complex fluid systems" (2013). Doctoral Dissertations. 8.
https://scholarsmine.mst.edu/doctoral_dissertations/8