Doctoral Dissertations

Alternative Title

Compressive sensing for three dimensional microwave imaging systems


Hamed Kajbaf


"Compressed sensing (CS) image reconstruction techniques are developed and experimentally implemented for wideband microwave synthetic aperture radar (SAR) imaging systems with applications to nondestructive testing and evaluation. These techniques significantly reduce the number of spatial measurement points and, consequently, the acquisition time by sampling at a level lower than the Nyquist-Shannon rate. Benefiting from a reduced number of samples, this work successfully implemented two scanning procedures: the nonuniform raster and the optimum path.

Three CS reconstruction approaches are also proposed for the wideband microwave SAR-based imaging systems. The first approach reconstructs a full-set of raw data from undersampled measurements via L1-norm optimization and consequently applies 3D forward SAR on the reconstructed raw data. The second proposed approach employs forward SAR and reverse SAR (R-SAR) transforms in each L1-norm optimization iteration reconstructing images directly. This dissertation proposes a simple, elegant truncation repair method to combat the truncation error which is a critical obstacle to the convergence of the CS iterative algorithm. The third proposed CS reconstruction algorithm is the adaptive basis selection (ABS) compressed sensing. Rather than a fixed sparsifying basis, the proposed ABS method adaptively selects the best basis from a set of bases in each iteration of the L1-norm optimization according to a proposed decision metric that is derived from the sparsity of the image and the coherence between the measurement and sparsifying matrices. The results of several experiments indicate that the proposed algorithms recover 2D and 3D SAR images with only 20% of the spatial points and reduce the acquisition time by up to 66% of that of conventional methods while maintaining or improving the quality of the SAR images"--Abstract, page iv.


Zheng, Y. Rosa

Committee Member(s)

Pommerenke, David
Richards, Von
Moss, Randy Hays, 1953-
Zoughi, R.


Electrical and Computer Engineering

Degree Name

Ph. D. in Electrical Engineering


  • American Society for Nondestructive testing
  • Missouri University of Science and Technology. Intelligent Systems Center

Research Center/Lab(s)

Intelligent Systems Center


Missouri University of Science and Technology

Publication Date

Fall 2012

Journal article titles appearing in thesis/dissertation

  • Improving efficiency of microwave wideband imaging using compressed sensing techniques
  • Compressed sensing for SAR-based wideband 3D microwave imaging system using nonuniform FFT
  • Adaptive basis selection compressed sensing
  • Quantitative and qualitative comparison of SAR images from incomplete measurements using compressed sensing and nonuniform FFT
  • 3D image reconstruction from sparse measurement of wideband millimeter wave SAR experiments


xii, 120 pages

Note about bibliography

Includes bibliographical references.


© 2012 Hamed Kajbaf, All rights reserved.

Document Type

Dissertation - Open Access

File Type




Subject Headings

Microwave imaging
Signal processing
Sparse matrices
Synthetic aperture radar

Thesis Number

T 10140

Print OCLC #


Electronic OCLC #