Energy Dissipation in Soil Structures During Uniform Cyclic Loading


Characterization of soil response under cyclic loading is one of the major challenges in evaluating liquefaction triggering. In this paper, we have performed numerical simulations to study dissipated energy and accumulated damage in soil structure at onset of liquefaction. For this purpose, at first, we validated Plasticity Model for Sands (PM4Sand) in capturing soil cyclic response with findings in experiments. Thereafter, the model was utilized to simulate soil behavior during uniform cyclic loading under controlled boundary conditions and stress paths. Simulations were performed on soils with different relative densities and under different confining pressures. The results of this study indicate that energy dissipation is directly related to PWP generation, and is independent of the amplitude, form and frequency of loading. Dissipated energy can be utilized as a versatile metric to characterize soil strength degradation and liquefaction triggering during cyclic loading.

Meeting Name

Geotechnical Frontiers 2017 (2017: Mar. 12-15, Orlando, FL)


Civil, Architectural and Environmental Engineering

Keywords and Phrases

Cyclic Loads; Energy Dissipation; Soil Liquefaction; Soils; Stress Analysis, Accumulated Damage; Cyclic Response; Different Confining Pressures; Dissipated Energy; Plasticity Model; Relative Density; Soil Behaviors; Soil Structure, Loading

International Standard Serial Number (ISSN)


Document Type

Article - Conference proceedings

Document Version


File Type





© 2017 American Society of Civil Engineers (ASCE), All rights reserved.

Publication Date

01 Mar 2017