Smart Fiber-Reinforced Polymer Rods Featuring Improved Ductility and Health Monitoring Capabilities


The strain-measuring capability of fiber optic strain gages in fiber-reinforced polymer (FRP) rebars was investigated for failure-inducing loads. Fiber optic interferometric sensors were embedded in a pultruded carbon fiber core and then another layer of carbon fibers were filament wound around the core to form a shell. Pultrusion and filament winding techniques protect the fiber optic strain gages from the concrete environment while providing a secure bond to the core and additional ductility to the overall FRP rebar. Tests of coupon FRP rebar and of FRP-rebar-reinforced concrete beams show that the fiber optic strain gages can read internal strain through failure and can duplicate data from conventional linear variable differential transformers and electrical resistance strain gages. Also, the shell of the FRP rebar inside the concrete beams failed before the rebar core providing pseudo-ductility.


Civil, Architectural and Environmental Engineering

Second Department

Electrical and Computer Engineering

Third Department

Mechanical and Aerospace Engineering

Keywords and Phrases

Soft Matter; Liquids and Polymers; Instrumentation and Measurement; Optics; Quantum Optics and Lasers; Condensed Matter; Structural; Mechanical & Thermal

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2001 Institute of Physics - IOP Publishing, All rights reserved.

Publication Date

01 Jan 2001