The exploitation of coal and the disposal of waste plastic present significant environmental and economic challenges that require sustainable and profitable solutions. In response, we propose a renewable construction composite material of coal-based thermoplastic composite (CTC) that can be made from low-grade coal and plastic waste. We developed and tested the hot-press fabrication method for this CTC, using coal with a maximum particle size of 4.75 mm and recycled high-density polyethylene (HDPE). The effects of the coal fraction (50–80 wt.%) on compressive properties, thermal properties, microstructure, and ecological and economic efficiencies of the CTC were investigated. Test results revealed that the compressive strength and modulus decrease as the coal fraction increases. However, the thermal properties, including thermal conductivity and specific heat, increase with higher coal contents. Compared to concrete, the CTC has about half the thermal conductivity and twice the specific heat, making it a more energy-efficient construction material. Microstructure testing helped to reveal the mechanisms behind the above behaviors of CTC from the observation of binder volume, bonding quality between coal and HDPE, and porosity variation. The life cycle analysis indicated that the CTC production reduced embodied energy, carbon footprint, and cost by up to 84%, 73%, and 14%, respectively. Therefore, we recommend the CTC with 50–70% coal fraction as an innovative construction material with satisfied mechanical and thermal properties, better cost efficiency, and a reduced ecological impact.


Civil, Architectural and Environmental Engineering

Publication Status

Open Access


U.S. Department of Transportation, Grant 69A3551747126

Keywords and Phrases

coal-based thermoplastic composites; ecological and economic efficiencies; high-density polyethylene; mechanical properties; microstructure; thermal properties

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2023 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Aug 2023