Recent advancements in construction technology have led to high-strength concrete and steel. However, these developments have depreciated the accuracy of the design equations in current provisions, which were based on normal-grade materials. To fill such a research gap, this study presents a novel deep learning-based computation scheme that can replace the current design provisions by virtue of its superior accuracy and reliability. The proposed approach exploits Neural Additive Models (NAMs) in which geometric and material properties associated with a normal weight concrete-to-concrete shear interface are inputted to individual neural network blocks. The outputs of the individual blocks are linearly combined to produce the prediction for interfacial shear strength. This model provides a way to identify and quantify the individual contributions of the input parameters, thus enhancing the interpretability of the model predictions for shear strength at the normal weight concrete-to-concrete interface. The deep learning-informed design (LID) scheme improves the prediction accuracy of the shear strength equation in the existing AASHTO LRFD Bridge Design Specifications by over 32%.


Civil, Architectural and Environmental Engineering

Publication Status

Available Access


U.S. Department of Transportation, Grant 00065573

Keywords and Phrases

concrete-to-concrete interface; interfacial shear strength; learning-informed design; neural additive models; shear friction

International Standard Serial Number (ISSN)

2169-4052; 0361-1981

Document Type

Article - Journal

Document Version


File Type





© 2023 SAGE Publications, All rights reserved.

Publication Date

01 Jan 2023