Construction bidding is a complex process that involves several potential risks and uncertainties for all the stakeholders involved. Such complexities, risks, and uncertainties, if uncontrolled, can lead to the rise of claims, conflicts, and disputes during the course of a project. Even though a substantial amount of knowledge has been acquired about construction disputes and their causation, there is a lack of research that examines the causes of disputes associated with the bidding phase of projects. This study addresses this knowledge gap within the context of infrastructure projects. In investigating and analyzing the causation of disputes related to the bidding stage, the authors implemented a multistep research methodology that incorporated data collection, network analysis (NA), spectral clustering, and association rule analysis (ARA). Based on a manual content analysis of 94 legal cases, the authors identified a comprehensive list of 27 causes of disputes associated with the bidding stage of infrastructure projects. The NA results indicated that the major common causes leading to disputes in infrastructure projects comprise inaccurate cost estimates, inappropriate tender documents, nonproper or untimely notification of errors in a submitted bid, nonproper or untimely notification of errors in tender documents, and noncompliance with Request for Proposals' (RFP) requirements. Upon categorizing and clustering the causes of disputes, the ARA results revealed that the most critical associations are related to differing site conditions, errors in submitted bids, unbalanced bidding, errors in cost estimates, and errors in tender documents. This study promotes an in-depth understanding of the causes of disputes associated with the bidding phase within the context of infrastructure projects, which should better enable the establishment of proactive plans and practices to control these causes as well as mitigate the occurrence of their associated disputes during project execution.


Civil, Architectural and Environmental Engineering

International Standard Serial Number (ISSN)

1943-5479; 0742-597X

Document Type

Article - Journal

Document Version


File Type





© 2023 American Society of Civil Engineers, All rights reserved.

Publication Date

01 Sep 2023