Unmanned agricultural aircraft system (UAAS) has been widely employed as a low-cost and reliable method to apply agrochemicals to small agricultural fields in China. The performance of battery-powered multirotor UAAS has attracted considerable attention from manufacturers and researchers. The objective of this research was to design a UAAS equipping with a data acquisition system, to characterize its chemical application performance based on droplet deposition data and optimize the operating parameters. Each test was repeated three times to assess the reliability of the spraying system. Various flight parameters were also evaluated. The optimal spray pressure for the XR8001 and XR8002 (TeeJet, Wheaton, IL, USA) nozzles was found to be 300 kPa, and the latter nozzle had a higher droplet deposition rate and spray volume. Spray volume was not significantly affected by the flight speed or droplet density and was negatively correlated with the nozzle pressure. The results of this study provide a basis for improving the efficiency of UAAS chemical application systems in terms of large-scale application.


Civil, Architectural and Environmental Engineering


This work was partially financially supported by the National Key Research and Development Program of China (Grant No. 2016YFD0200701).

Keywords and Phrases

Aerial Sprayer; Chemical Application; Effective Swath Width; Flight Parameters; Onboard Data Acquisition System; Performance Evaluation; Spray Characterization; Unmanned Agricultural Aircraft System

International Standard Serial Number (ISSN)

1934-6352; 1934-6344

Document Type

Article - Journal

Document Version

Final Version

File Type





© 2021 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Jul 2021