Fiber Orientation Effects on Ultra-High Performance Concrete Formed by 3D Printing


Despite the growing interest in 3D concrete printing, its current progress is limited by reinforcing methods. Inclusion of steel fibers is a potential reinforcing solution; however, the effect of printing process on orientation of the fibers is still unknown. This study aims to quantitatively investigate the orientation distribution of steel fibers in 3D printed ultra-high performance concrete. The effects of extrusion nozzle size, Cartesian print speed, and fiber volume fraction on the orientation of fibers were evaluated using digital image analysis. The consequent effects of the fiber orientation on the mechanical properties of the 3D-printed specimens were also determined. The results were compared with those of the conventionally mold-cast specimens. The results revealed that the smaller nozzle size and higher fiber volume fraction significantly enhanced the fiber alignment parallel to the printing direction. This preferential fiber alignment led to superior mechanical performance of the printed specimens to the mold-cast specimens.


Civil, Architectural and Environmental Engineering

Keywords and Phrases

3D printing; Fiber orientation; Image analysis; Mechanical properties; Ultra-high performance concrete

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2021 Pergamon, All rights reserved.

Publication Date

01 May 2021