Abstract

Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker. The performance of the AEMs was investigated in nonaqueous redox flow batteries under ideal conditions. Performance evaluation encompassed several key factors, including durability in a nonaqueous solvent, charge-carrying ions permeability, electric cell resistance, crossover of redox-active molecules, and mechanical properties. The BuNB-based AEMs outperformed the commercial Fumasep membrane in battery cycling tests, showcasing their superior performance characteristics. Long-term performance tests showed that the top performing PNB membrane exhibited an impressive 83% total capacity retention over 1000 charge/discharge cycles. The low loss was primarily due to minimal crossover. In contrast, the FAPQ-375 commercial membrane experienced significantly lower capacity retention, measuring only 28%, due to high crossover.

Department(s)

Chemistry

Keywords and Phrases

anion exchange membranes; butyl norbornene; cross-linked polymeric membranes; nonaqueous redox flow batteries; tetramethyl hexadiamine

International Standard Serial Number (ISSN)

1944-8252; 1944-8244

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 American Chemical Society, All rights reserved.

Publication Date

29 Jan 2025

PubMed ID

39831506

Included in

Chemistry Commons

Share

 
COinS