Self-diffusion coefficients of the components of the microemulsion system glycerol/hexanol/sodium dodecyl sulfate (SDS) were determined in the presence and absence of an oil, p-xylene, and the results were compared with those from corresponding aqueous systems (i.e., glycerol replaced by water). In the aqueous system, the water in the hexanol rich isotropic liquid showed a diffusion coefficient less than 10% of that of free water, while that of hexanol was roughly 80% of that of free hexanol; such restricted motion of the water is consistent with the presence of water as discrete droplets. Partial substitution of p-xylene for hexanol did not affect the diffusion coefficient of water appreciably. In the nonaqueous three-component system, the diffusion coefficients of glycerol, SDS, and hexanol all decreased in concert as the glycerol content increased, e.g., that of hexanol goes from 1.75 x 10-10 m2 s-1 to 2.7 x 10-11 m2 s-1 as the glycerol content ranges from 10 to 80%. The diffusion coefficient of glycerol was always greater than that of neat glycerol by a factor of 5 to 45. As the diffusion coefficients of all components were within a factor of 2, the idea of segregating one or more components into disconnected domains is not supported. There is no support for glycerol droplets but these microemulsions appear to be structureless. © 1987.




U.S. Department of Energy, Grant None

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2023 Elsevier, All rights reserved.

Publication Date

01 Jan 1987

Included in

Chemistry Commons