Abstract

Oxidative stress, which is the loss of balance between antioxidant defense and oxidant production in the cells, is implicated in the molecular mechanism of heavy metal-induced neurotoxicity. Given the key role of lead (Pb) and cadmium (Cd) in inducing oxidative stress, we investigated their role in disrupting the integrity and function of immortalized human brain microvascular endothelial cells (hCMEC/D3). To study this, hCMEC/D3 cells were exposed to control media or to media containing different concentrations of Pb or Cd. Those exposed to Pb or Cd showed significantly higher oxidative stress than the untreated group, as indicated by cell viability, reactive oxygen species (ROS), glutathione (GSH) levels, and catalase enzyme activity. Pb also induced oxidative stress-related disruption of the hCMEC/D3 cell monolayer, as measured by trans-endothelial electrical resistance (TEER), the dextran permeability assay, and the level of tight junction protein, zona occluden protein (ZO-2). However, no significant disruption in the integrity of the endothelial monolayer was seen with cadmium at the concentrations used. Taken together, these results show that Pb and Cd induce cell death and dysfunction in hCMEC/D3 cells and, in the case of Pb, barrier disruption. This suggests blood brain barrier (BBB) dysfunction as a contributing mechanism in Pb and Cd neurotoxicities.

Department(s)

Chemistry

Keywords and Phrases

Blood brain barrier; Cadmium; Lead; Neurotoxicty; Reactive oxygen species

International Standard Serial Number (ISSN)

2305-6304

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

05 Jun 2014

Included in

Biochemistry Commons

Share

 
COinS