This work investigates the non-catalyzed supercritical methanol (SCM) process for continuous biodiesel production. The lab-scale setup was designed and used for biodiesel production in the temperature range of 520–650 K and 83–380 bar with an oil-to-methanol molar ratio ranging from 1:5 to 1:45. The experiments were performed in the coiled plug flow tubular reactor. The volumetric flow rate of the methanol/oil ranged from 0.1-10 mL/min. This work examines a new reactor technology involving preheating and pre-mixing of the methanol/oil mixture to reduce setup cost and increase biodiesel yield under the same reaction conditions. Work performed showed that FAME’s yield increased rapidly with temperature and pressure above the methanol critical points (i.e., 513 K and 79.5 bar). The best methyl-ester yield using this reaction technology was 91% at 590 K temperature and 351 bars with an oil-to-methanol ratio of 39 and a 15-min residence time. Furthermore, the kinetics of the free catalyst transesterification process was studied in supercritical methanol under different reaction conditions.


Chemical and Biochemical Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

Biodiesel; Continuous flow reactor; Supercritical fluids; Transesterification

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2021 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Apr 2021