An Advanced Evaluation of the Mechanistic Scale-up Methodology of Gas-Solid Spouted Beds using Radioactive Particle Tracking


We implemented for the first time our radioactive particle tracking as an advanced noninvasive technique to further evaluate and validate our newly developed mechanistic scale-up methodology based on matching the radial profile of the gas holdup. Two spouted beds with diameters of 0.076 and 0.152 m were used. Three sets of conditions were implemented; i.e., conditions of the reference case, conditions that provided a gas-holdup radial profile similar to that of the reference case, and conditions that provided a gas-holdup radial profile dissimilar to that of the reference case. The results confirm the validation of the scale-up methodology in terms of obtaining closer dimensionless values and radial profiles of components of the particle velocity, normal stress, shear stress, and turbulent kinetic energy. The results further advance the understanding of gas-solids spouted beds, provide deeper insight into the solids dynamics of the beds and present important benchmarking data for validating computational fluid dynamics codes and models.


Chemical and Biochemical Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

Computational Fluid Dynamics; Gases; Kinetic Energy; Kinetics; Radioactive Tracers; Radioactivity; Shear Flow; Shear Stress; Turbulence; Velocity; Velocity Control; Isotropic Particles; Radioactive Particle Tracking; Scaling-Up; Spouted Bed; Three-Dimensional Velocity Fields; Fluidized Beds; Tristructural-Isotropic Particle

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2017 Elsevier, All rights reserved.

Publication Date

01 Oct 2017