The Effects of Carbon-To-Oxygen Ratio Upon Supercritical Water Reformation for Hydrogen Production


With the continually growing energy demands of today's society, finding innovative ways to produce renewable energy is increasingly important. One such process is the supercritical water reformation of hydrocarbons for hydrogen production. Supercritical water reformation is a versatile non-catalytic process that can utilize a wide variety of commonly available raw materials. Such raw materials include methanol, ethanol, glycerin, sucrose, diesel, and jet fuel. With such a diverse feedstock, determining which factors have a substantial impact on the supercritical water reformation is crucial. One such factor is the carbon-to-oxygen ratio of the feed material. To determine the effect of carbon-to-oxygen ratio, an experimental study was performed using n-propanol, isopropanol, propylene glycol, and glycerin solutions. The experimental study was conducted using a 0.1 L Inconel 625 reactor at a constant pressure of 22.4 MPa and a reactor space time of 100 seconds. The feed solution for each experiment contained an 8:3 water-to-carbon ratio, and the effect of carbon-to-oxygen ratio was observed at 500 and 600⁰C.

Meeting Name

2011 American Institute of Chemical Engineers (AIChE) Annual Meeting (2011: Oct. 16-21, Minneapolis, MN)


Chemical and Biochemical Engineering

Document Type

Article - Conference proceedings

Document Version


File Type





© 2011 American Institute of Chemical Engineers (AIChE), All rights reserved.

Publication Date

21 Oct 2011

This document is currently not available here.