The design and development of polymeric composites that can effectively capture and destruct toxic chemicals with a fast detoxification rate is of high importance for protecting the military, first responders, and civilians. Here we report the synthesis and assessment of zirconium hydroxide (Zr (OH)4)-incorporated Ultem, Matrimid, and PIM-1 composites for detoxification of dimethyl 4-nitrophenylphosphonate (DMNP), as a type G toxic nerve agent simulant. Maintaining homogeneity, three different loadings (8, 20, 30 wt %) of Zr (OH)4 were incorporated into the polymers, and the thin films of composite materials were developed for subsequent hydrolysis tests. Our results indicated that increasing the Zr (OH)4 loading enhances the hydrolysis rate and the amount of DMNP converted for all three polymers. While the surface area and porosity of PIM-1 reduced upon increasing Zr (OH)4 loading, 30%-Zr (OH)4@PIM-1 was found to be the best performing material to achieve ∼100% conversion in 2 h with a hydrolysis rate of 5.5 x 10-3 μmol/s at room temperature. It was also observed that the performance of 30%-Zr (OH)4@PIM-1 is drastically improved at 60 °C by exhibiting a conversion rate of 4.9 μmol/s, while achieving 100% conversion almost instantaneously (within 5 s). Our findings represent a substantial improvement of this class of materials over previously reported polymer-metal hydroxide composites toward the detoxification of toxic gases.


Chemical and Biochemical Engineering


National Science Foundation, Grant CBET-2019350

Keywords and Phrases

chemical warfare agent; composites; detoxification; hydrolysis; polymer

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2023 American Chemical Society, All rights reserved.

Publication Date

01 Jan 2023