Study of Gas Holdup Distribution in Cylindrical Split Airlift Reactor by using Gamma-Ray Densitometry (GRD)

Abstract

The local gas holdup details and behaviors in the cylindrical split airlift column by using an unconventional gamma-ray densitometry (GRD) measurement in non-invasive manner technique was investigated for the first time in this work for such kind of airlift column. With different gas velocities, 1, 2, and 3 cm/s, at three various axial planes (different levels) in z = 3, 60, and 110 cm were studied for local distribution in radial gas holdup profiles. The distribution in gas-liquid phases (air-water system) in the entire split reactor column, in the rising and descending sides, including their behavior in the upper and lower zones of the split plate, were investigated as well. The results of this study showed that approximately all reactor zones had exemplary gas-liquid phases and that there was a large magnitude over both the dividing ring and the top sections. The results further indicated that the distribution of which flow variable in the implementation of the cylindrical split reactor can have an important impact on its behavior, especially for cultivating applications of microorganisms. These data can be used as benchmarks results for CFD simulations and validation.

Department(s)

Chemical and Biochemical Engineering

Keywords and Phrases

Cylindrical Airlift Reactor; Gas Holdup; GRD Technique

International Standard Serial Number (ISSN)

2227-9717

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2022 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 May 2022

This document is currently not available here.

Share

 
COinS