Abstract
Urban areas experience significant alterations in their local surface energy balance due to changes in the thermal properties of impervious surfaces, albedo, land use, and land cover. in addition, the embedded influence of urbanization and heat-trapping in the urban canopy cause city temperature warmer compared to its surroundings peri-urban regions. However, the influence of urbanization on winter surface temperatures remains unclear. in this study, the urbanization influence on winter surface temperature in Bhubaneswar, a tropical two-tier city in India, is assessed using a high-resolution (4 km x 4 km) urban canopy model coupled with the Weather Research and Forecasting model. Numerical experiments are conducted with no urban coupling (CTL) and with coupling of a single-layer urban canopy model (UCM) for the winters of 2004 and 2015. the study suggests that both model simulations exhibit a similar warm bias in mean surface temperature (~ 2.2 °C), but UCM's surface temperature better agrees with the observations compared to CTL. the warm bias in both experiments is primarily contributed by a higher nighttime warm bias (~ 3.2 °C). the study reveals that urbanization contributes to ~ 0.4 °C increase in surface temperature in 2015, especially in the eastern lowland regions of the city, while the impact is minimal in 2004. in the western region, the influence is nullified, possibly due to lower surface specific humidity affecting longwave radiation in a higher terrain setting. This study underscores the significance of terrain and local microclimate conditions in shaping winter urban surface temperatures, shedding light on the complex interplay between urbanization and climate.
Recommended Citation
H. P. Nayak et al., "Influence of Urbanization on Winter Surface Temperatures in a Topographically Asymmetric Tropical City, Bhubaneswar, India," Computational Urban Science, vol. 3, no. 1, article no. 36, Springer, Dec 2023.
The definitive version is available at https://doi.org/10.1007/s43762-023-00112-y
Department(s)
Biological Sciences
Publication Status
Open Access
Keywords and Phrases
Topography; Urban canopy model; Urbanization; Winter surface temperature
International Standard Serial Number (ISSN)
2730-6852
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2025 Springer, All rights reserved.
Publication Date
01 Dec 2023