Abstract

The unique geographical diversity and rapid urbanization across the Indian subcontinent give rise to large-scale spatiotemporal variations in urban heating and air emissions. the complex relationship between geophysical parameters and anthropogenic activity is vital in understanding the urban environment. This study analyses the characteristics of heating events using aerosol optical depth (AOD) level variability, across 43 urban agglomerations (UAs) with populations of a million or more, along with 13 industrial districts (IDs), and 14 biosphere reserves (BRs) in the Indian sub-continent. Pre-monsoon average surface heating was highest in the urban areas of the western (42 °C), central (41.9 °C), and southern parts (40 °C) of the Indian subcontinent. High concentration of AOD in the eastern part of the Indo-Gangetic Plain including the megacity: Kolkata (decadal average 0.708) was noted relative to other UAs over time. the statistically significant negative correlation (−0.51) between land surface temperature (LST) and AOD in urban areas during pre-monsoon time illustrates how aerosol loading impacts the surface radiation and has a net effect of reducing surface temperatures. Notable interannual variability was noted with, the pre-monsoon LST dropping in 2020 across most of the selected urban regions (approx. 89% urban clusters) while it was high in 2019 (for approx. 92% urban clusters) in the pre-monsoon season. the results indicate complex variability and correlations between LST and urban aerosol at large scales across the Indian subcontinent. These large-scale observations suggest a need for more in-depth analysis at city scales to understand the interplay and combined variability between physical and anthropogenic atmospheric parameters in mesoscale and microscale climates.

Department(s)

Biological Sciences

Publication Status

Open Access

Comments

University of Texas at Austin, Grant 3421/(NET-DEC 2018

Keywords and Phrases

aerosol optical depth; biosphere reserve; industrial districts; land surface temperature; urban agglomeration

International Standard Serial Number (ISSN)

2072-4292

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2025 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 May 2023

Included in

Biology Commons

Share

 
COinS