Abstract

Protein aggregates and nuclear inclusions (NIs) containing components of the ubiquitin-proteasome system (UPS), expanded polyglutamine (polyQ) proteins, and transcriptional coactivators characterize cellular responses to stress and are hallmarks of neurodegenerative diseases. The biological function of polyQ-containing aggregates is unknown. To analyze proteasomal activity within such aggregates, we present a nanoparticle (NP)-based method that enables controlled induction of sodium dodecyl sulfate-resistant inclusions of endogenous nuclear proteins while normal regulatory mechanisms remain in place. Consistent with the idea that the UPS maintains quality control, inhibition of proteasomal proteolysis promotes extra large protein aggregates (1.4-2 μm), whereas formation of NP-induced NIs is found to be inversely correlated to proteasome activation. We show that global proteasomal proteolysis increases in NP-treated nuclei and, on the local level, a subpopulation of NIs overlaps with focal domains of proteasome-dependent protein degradation. These results suggest that inclusions in the nucleus constitute active proteolysis modules that may serve to concentrate and decompose damaged, malfolded, or misplaced proteins. © The Rockefeller University Press.

Department(s)

Biological Sciences

International Standard Serial Number (ISSN)

0021-9525; 0021-9525

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Publication Date

25 Feb 2008

PubMed ID

18283109

Included in

Biology Commons

Share

 
COinS