Abstract
We investigate the diverging size of the critical nucleus near the spinodal using the gradient theory ~GT! of van der Waals and Cahn and Hilliard and mean field density functional theory ~MFDFT!. As is well known, GT predicts that at the spinodal the free energy barrier to nucleation vanishes while the radius of the critical fluctuation diverges. We show numerically that the scaling behavior found by Cahn and Hilliard for these quantities holds quantitatively for both GT and MFDFT. We also show that the excess number of molecules Dg satisfies Cahn-Hilliard scaling near the spinodal and is consistent with the nucleation theorem. From the latter result, it is clear that the divergence of Dg is due to the divergence of the mean field isothermal compressibility of the fluid at the spinodal. Finally, we develop a Ginzburg criterion for the validity of the mean field scaling relations. For real fluids with short-range attractive interactions, the near-spinodal scaling behavior occurs in a fluctuation dominated regime for which the mean field theory is invalid. Based on the nucleation theorem and on Wang's treatment of fluctuations near the spinodal in polymer blends, we infer a finite size for the critical nucleus at the pseudospinodal identified by Wang.
Recommended Citation
G. Wilemski and J. Li, "Nucleation Near the Spinodal: Limitations of Mean Field Density Functional Theory," Journal of Chemical Physics, American Institute of Physics (AIP), Oct 2004.
The definitive version is available at https://doi.org/10.1063/1.1801273
Department(s)
Physics
Sponsor(s)
United States. Department of Energy
Keywords and Phrases
Gradient Methods; Liquid-Vapour Transformations; Spinodal Decomposition; Nucleation
International Standard Serial Number (ISSN)
0021-9606
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2004 American Institute of Physics (AIP), All rights reserved.
Publication Date
01 Oct 2004