Abstract

The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV / u C 6 + and 3.6 MeV / u u 5 3 + impact. Low-energy electron emission (E e < 150 eV ) as a function of the projectile deflection ϑ p (momentum transfer), i.e., the Bethe surface [[15]], has been mapped with Δ ϑ p ± 25 nanoradian resolution at extremely large perturbations (3.6 MeV / uAu53+ ) where single ionization occurs at impact parameters of typically 10 times the He K -shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.

Department(s)

Physics

Keywords and Phrases

Approximation theory; Continuum mechanics; Electron emission; Helium; Impact ionization; Kinematics; Perturbation techniques; Bethe surface; Ion atom collisions; Momentum transfer; Nanoradian resolution; Projectile deflection; Atomic physics

International Standard Serial Number (ISSN)

0031-9007

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2001 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS