Abstract

We consider the influence of a quenched random field on the critical behavior of a quantum spherical model at the zero-temperature quantum phase transition. We find a complete solution of the model for arbitrary translationally invariant pair interactions. It turns out that the critical behavior for zero as well as finite temperatures is dominated by static random field fluctuations rather than by quantum or thermal fluctuations. Therefore the critical behavior close to the zero-temperature quantum phase transition is identical to that close to a finite-temperature transition. The system does not show a crossover from quantum to classical behavior.

Department(s)

Physics

International Standard Serial Number (ISSN)

0163-1829

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 1996 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS