Abstract

We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models. The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely. As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.

Department(s)

Physics

International Standard Serial Number (ISSN)

1098-0121

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2012 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS