Abstract

In many manufacturing applications contour tracking is more important than individual axis tracking. Many control techniques, including iterative learning control (ILC), target individual axis error. Because individual axis error only indirectly relates to contour error, these approaches may not be very effective for contouring applications. Cross-coupled ILC (CCILC) is a variation on traditional ILC that targets the contour tracking directly. In contour trajectories with rapid changes, high frequency control is necessary in order to meet tracking requirements. This paper presents an improved CCILC that uses a linear time-varying (LTV) filter to provide high frequency control for short durations. The improved CCILC is designed for raster-scan tracking on a Cartesian robotic test platform. Analysis and experimental results are presented.

Department(s)

Mechanical and Aerospace Engineering

Keywords and Phrases

Adaptive Control; Control Engineering Computing; Control System Synthesis; Iterative Methods Learning Systems; Linear Systems; Motion Control; Robots; Time-Varying Systems

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2008 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Share

 
COinS