Title

Investigation of Mixing and Diffusion Processes in Hybrid Spot Laser-MIG Keyhole Welding

Abstract

In hybrid laser-MIG keyhole welding, anti-crack elements can be added into the weld pool through a filler metal in anticipation of compensating mass loss, preventing porosity formation and improving compositional and mechanical properties of the welds. Understanding the mixing and diffusion of the filler metal in the molten pool is vital to achieve these desired objectives. In this study, mathematical models and associated numerical techniques have been developed to investigate the mixing and diffusion processes in hybrid laser-MIG keyhole welding. The transient interactions between droplets and weld pool and dynamics of the melt flow are studied. The effects of key process parameters, such as droplet size (wire diameter), droplet generation frequency (wire feed speed) and droplet impinging speed, on mixing/diffusion are systematically investigated. It was found that compositional homogeneity of the weld pool is determined by the competition between the mixing rate and the solidification rate. A small-size filler droplet together with high generation frequency can increase the latitudinal diffusion of the filler metal into the weld pool, while the large-size droplet along with the low generation frequency helps to get more uniform longitudinal diffusion. Increasing the impinging velocity of the filler droplet can improve the latitudinal diffusion of the filler metal. However, a high impinging velocity can cause a lower diffusion zone in the upper part of the welds. This study provides a good foundation for optimizing the hybrid laser-MIG keyhole welding process to achieve quality welds with desired properties.

Department(s)

Mechanical and Aerospace Engineering

Sponsor(s)

General Motors Corporation

Keywords and Phrases

Condensed Matter: Structural-Mechanical & Thermal; Soft Matter-Liquid and Polymers

Library of Congress Subject Headings

Fluid dynamics

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2009 Institute of Physics - IOP Publishing, All rights reserved.


Share

 
COinS