Title

Core-Cross-Linked Nanoparticles Reduce Neuroinflammation and Improve Outcome in a Mouse Model of Traumatic Brain Injury

Abstract

Traumatic brain injury (TBI) is the leading cause of death and disability in children and young adults, yet there are currently no treatments available that prevent the secondary spread of damage beyond the initial insult. The chronic progression of this secondary injury is in part caused by the release of reactive oxygen species (ROS) into surrounding normal brain. Thus, treatments that can enter the brain and reduce the spread of ROS should improve outcome from TBI. Here a highly versatile, reproducible, and scalable method to synthesize core-cross-linked nanoparticles (NPs) from polysorbate 80 (PS80) using a combination of thiol-ene and thiol-Michael chemistry is described. The resultant NPs consist of a ROS-reactive thioether cross-linked core stabilized in aqueous solution by hydroxy-functional oligoethylene oxide segments. These NPs show narrow molecular weight distributions and have a high proportion of thioether units that reduce local levels of ROS. In a controlled cortical impact mouse model of TBI, the NPs are able to rapidly accumulate and be retained in damaged brain as visualized through fluorescence imaging, reduce neuroinflammation and the secondary spread of injury as determined through magnetic resonance imaging and histopathology, and improve functional outcome as determined through behavioral analyses. Our findings provide strong evidence that these NPs may, upon further development and testing, provide a useful strategy to help improve the outcome of patients following a TBI.

Department(s)

Materials Science and Engineering

Keywords and Phrases

antioxidant; controlled cortical impact; gliosis; hippocampus; polysorbate 80; startle habituation

International Standard Serial Number (ISSN)

1936-0851

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2017 American Chemical Society (ACS), All rights reserved.

Share

 
COinS