Masters Theses
Keywords and Phrases
Asymptotic Behavior; Asymptotic Stability; Pantograph Equation; Quantum Calculus
Abstract
"In this thesis, the pantograph equation in quantum calculus is investigated. The pantograph equation is a famous delay differential equation that has been known since 1971. Till the present day, the continuous and the discrete cases of the pantograph equation are well studied. This thesis deals with different pantograph equations in quantum calculus. An explicit solution representation and the exponential behavior of solutions of a pantograph equation are proved. Furthermore, several pantograph equations regarding asymptotic stability are considered. In fact, conditions for the asymptotic stability of the zero solution are derived and subsequently illustrated by examples. Moreover, an explicit solution in terms of the exponential function for a special pantograph equation is obtained"--Abstract, page iii.
Advisor(s)
Bohner, Martin, 1966-
Committee Member(s)
Akin, Elvan
Gelles, Gregory M.
Department(s)
Mathematics and Statistics
Degree Name
M.S. in Applied Mathematics
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2017
Pagination
viii, 77 pages
Note about bibliography
Includes bibliographical references (pages 75-76).
Rights
© 2017 Thomas Griebel
Document Type
Thesis - Open Access
File Type
text
Language
English
Thesis Number
T 11092
Electronic OCLC #
992440871
Recommended Citation
Griebel, Thomas, "The pantograph equation in quantum calculus" (2017). Masters Theses. 7644.
https://scholarsmine.mst.edu/masters_theses/7644